

This page intentionally left blank

Introduction to Computing

Using Python

This page intentionally left blank

Introduction to Computing

Using Python

An Application Development Focus

Ljubomir Perkovic
DePaul University

VP AND EXECUTIVE PUBLISHER Don Fowley

EXECUTIVE EDITOR Beth Lang Golub

PROJECT LEAD Samantha Mandel

EDITORIAL PROGRAM ASSISTANT Elizabeth Mills

EXECUTIVE MARKETING MANAGER Christopher Ruel

CREATIVE DIRECTOR Harry Nolan

SENIOR DESIGNER Wendy Lai

COVER PHOTO ©simon2579/iStockphoto

SENIOR PRODUCTION EDITOR Sujin Hong

This book was set in Times New Roman 10 by Ljubomir Perkovic and printed and bound

by Courier. The cover was printed by Courier.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and

understanding for more than 200 years, helping people around the world meet their needs

and fulfill their aspirations. Our company is built on a foundation of principles that include

responsibility to the communities we serve and where we live and work. In 2008, we

launched a Corporate Citizenship Initiative, a global effort to address the environmental,

social, economic, and ethical challenges we face in our business. Among the issues we are

addressing are carbon impact, paper specifications and procurement, ethical conduct

within our business and among our vendors, and community and charitable support. For

more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording, scanning

or otherwise, except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher or

authorization through payment of the appropriate per-copy fee to the Copyright Clearance

Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com.

Requests to the Publisher for permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,

(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review

purposes only, for use in their courses during the next academic year. These copies are

licensed and may not be sold or transferred to a third party. Upon completion of the review

period, please return the evaluation copy to Wiley. Return instructions and a free of charge

return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to

adopt this textbook for use in your course, please accept this book as your complimentary

desk copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-0-470-61846-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To my father, Milan Perković (1937 - 1970),

who did not get the chance to complete his book.

This page intentionally left blank

Contents

Preface xvii

1
Introduction to Computer Science 1

1.1 Computer Science 2

What Do Computing Professionals Do? 2
Models, Algorithms, and Programs. 3
Tools of the Trade 3
What Is Computer Science? 4

1.2 Computer Systems 4

Computer Hardware 4
Operating Systems 5
Networks and Network Protocols 6
Programming Languages 7
Software Libraries 7

1.3 Python Programming Language 8

Short History of Python 8
Setting Up the Python Development Environment 8

1.4 Computational Thinking 9

A Sample Problem 9
Abstraction and Modeling 10
Algorithm . 10
Data Types 11
Assignments and Execution Control Structures 12

Chapter Summary . 13

vii

viii Contents

2
Python Data Types 15

2.1 Expressions, Variables, and Assignments 16

Algebraic Expressions and Functions 16
Boolean Expressions and Operators 18
Variables and Assignments 20
Variable Names 22

2.2 Strings. 23

String Operators 23
Indexing Operator 25

2.3 Lists. 27

List Operators 27
Lists Are Mutable, Strings Are Not 29
List Methods 29

2.4 Objects and Classes 31

Object Type 32
Valid Values for Number Types 33
Operators for Number Types 34
Creating Objects. 35
Implicit Type Conversions 36
Explicit Type Conversions 37
Class Methods and Object-Oriented Programming 38

2.5 Python Standard Library. 39

Module math 39
Module fractions 40

2.6 Case Study: Turtle Graphics Objects 41

Chapter Summary . 45

Solutions to Practice Problems 46

Exercises . 48

3
Imperative Programming 53

3.1 Python Programs 54

Our First Python Program. 54
Python Modules 56
Built-In Function print() 56
Interactive Input with input() 57
Function eval(). 58

Contents ix

3.2 Execution Control Structures 59

One-Way Decisions. 59
Two-Way Decisions 62
Iteration Structures 64
Nesting Control Flow Structures 67
Function range() 68

3.3 User-Defined Functions 69

Our First Function 69
print() versus return 71
Function Definitions Are “Assignment” Statements 72
Comments. 73
Docstrings . 73

3.4 Python Variables and Assignments 75

Mutable and Immutable Types 76
Assignments and Mutability 77
Swapping . 78

3.5 Parameter Passing 79

Immutable Parameter Passing 80
Mutable Parameter Passing 81

3.6 Case Study: Automating Turtle Graphics 82

Chapter Summary . 84

Solutions to Practice Problems 85

Exercises . 88

Problems . 88

4
Text Data, Files, and Exceptions 95

4.1 Strings, Revisited 96

String Representations 96
The Indexing Operator, Revisited 98
String Methods 99

4.2 Formatted Output 102

Function print() 102
String Method format() 104
Lining Up Data in Columns 106

4.3 Files. 109

File System 109
Opening and Closing a File 111
Patterns for Reading a Text File 114
Writing to a Text File 117

x Contents

4.4 Errors and Exceptions 118

Syntax Errors 118
Built-In Exceptions 119

4.5 Case Study: Logging File Access 121

A Thin Wrapper Function 122
Logging File Names 122
Getting and Formatting the Date and Time 123
Final Implementation of openLog() 125

Chapter Summary . 125

Solutions to Practice Problems 126

Exercises . 128

Problems . 130

5
Execution Control Structures 133

5.1 Decision Control and the if Statement 134

Three-Way (and More!) Decisions 134
Ordering of Conditions 136

5.2 for Loop and Iteration Patterns. 137

Loop Pattern: Iteration Loop 137
Loop Pattern: Counter Loop 138
Loop Pattern: Accumulator Loop 140
Accumulating Different Types 141
Loop Patterns: Nested Loop 143

5.3 More on Lists: Two-Dimensional Lists 145

Two-Dimensional Lists 146
Two-Dimensional Lists and the Nested Loop Pattern 147

5.4 while Loop. 149

5.5 More Loop Patterns 151

Iteration Patterns: Sequence Loop 151
Loop Pattern: Infinite Loop 153
Loop Pattern: Loop and a Half 153

5.6 Additional Iteration Control Statements 155

break Statement 155
continue Statement 156
pass Statement 157

Chapter Summary . 157

Solutions to Practice Problems 158

Exercises . 161

Problems . 163

Contents xi

6
Containers and Randomness 171

6.1 Dictionaries . 172

User-Defined Indexes as Motivation for Dictionaries 172
Dictionary Class Properties 173
Dictionary Operators 175
Dictionary Methods 176
A Dictionary as a Substitute for Multiway Condition 178
Dictionary as a Collection of Counters 179

6.2 Other Built-In Container Types 182

Class tuple 182
tuple Objects Can Be Dictionary Keys 183
Dictionary Method items(), Revisited 184
Class set . 185
Using the set Constructor to Remove Duplicates 186
set Operators 187
set Methods 188

6.3 Character Encodings and Strings 189

Character Encodings 189
ASCII . 190
Unicode . 191
UTF-8 Encoding for Unicode Characters 193

6.4 Module random . 194

Choosing a Random Integer 195
Choosing a Random “Real” 196
Shuffling, Choosing, and Sampling at Random. 197

6.5 Case Study: Games of Chance 198

Blackjack . 198
Creating and Shuffling the Deck of Cards 199
Dealing a Card 200
Computing the Value of a Hand 200
Comparing the Player’s and the House’s Hands 201
Main Blackjack Function 202

Chapter Summary . 203

Solutions to Practice Problems 203

Exercises . 206

Problems . 208

xii Contents

7
Namespaces 215

7.1 Encapsulation in Functions 216

Code Reuse 216
Modularity (or Procedural Decomposition) 217
Encapsulation (or Information Hiding) 217
Local Variables 217
Namespaces Associated with Function Calls 218
Namespaces and the Program Stack 219

7.2 Global versus Local Namespaces 223

Global Variables 223
Variables with Local Scope 224
Variables with Global Scope 224
Changing Global Variables Inside a Function 226

7.3 Exceptional Control Flow 227

Exceptions and Exceptional Control Flow 227
Catching and Handling Exceptions. 228
The Default Exception Handler 230
Catching Exceptions of a Given Type 230
Multiple Exception Handlers 231
Controlling the Exceptional Control Flow 232

7.4 Modules as Namespaces 235

Module Attributes 235
What Happens When Importing a Module 236
Module Search Path 236
Top-Level Module 238
Different Ways to Import Module Attributes 240

7.5 Classes as Namespaces 242

A Class Is a Namespace 242
Class Methods Are Functions Defined in the Class Namespace . . 243

Chapter Summary . 244

Solutions to Practice Problems 244

Exercises . 245

Problems . 248

Contents xiii

8
Object-Oriented Programming 251

8.1 Defining a New Python Class. 252
Methods of Class Point 252
A Class and Its Namespace 253
Every Object Has an Associated Namespace 254
Implementation of Class Point 254
Instance Variables 255
Instances Inherit Class Attributes 256
Class Definition, More Generally 257
Documenting a Class 258
Class Animal. 259

8.2 Examples of User-Defined Classes 260
Overloaded Constructor Operator 260
Default Constructor 261
Playing Card Class 262

8.3 Designing New Container Classes. 263
Designing a Class Representing a Deck of Playing Cards 263
Implementing the Deck (of Cards) Class 264
Container Class Queue 266
Implementing a Queue Class 267

8.4 Overloaded Operators 268
Operators Are Class Methods 269
Making the Class Point User Friendly 270
Contract between the Constructor and the repr() Operator . . . 272
Making the Queue Class User Friendly 274

8.5 Inheritance . 276
Inheriting Attributes of a Class 276
Class Definition, in General 279
Overriding Superclass Methods 279
Extending Superclass Methods 282
Implementing a Queue Class by Inheriting from list 283

8.6 User-Defined Exceptions 284
Raising an Exception 285
User-Defined Exception Classes 286
Improving the Encapsulation of Class Queue 286

8.7 Case Study: Indexing and Iterators 287
Overloading the Indexing Operators 287
Iterators and OOP Design Patterns 289

Chapter Summary . 292

Solutions to Practice Problems 293

Exercises . 296

Problems . 299

xiv Contents

9
Graphical User Interfaces 309

9.1 Basics of tkinter GUI Development 310
Widget Tk: The GUI Window. 310
Widget Label for Displaying Text 310
Displaying Images 312
Packing Widgets 313
Arranging Widgets in a Grid 315

9.2 Event-Based tkinter Widgets 317
Button Widget and Event Handlers 317
Events, Event Handlers, and mainloop() 319
The Entry Widget 320
Text Widget and Binding Events 323
Event Patterns and the tkinter Class Event 324

9.3 Designing GUIs . 326
Widget Canvas 326
Widget Frame as an Organizing Widget 329

9.4 OOP for GUIs . 331
GUI OOP Basics. 331
Shared Widgets Are Assigned to Instance Variables 333
Shared Data Are Assigned to Instance Variables 335

9.5 Case Study: Developing a Calculator 336
The Calculator Buttons and Passing Arguments to Handlers . . . 337
Implementing the “Unofficial” Event Handler click() 338

Chapter Summary . 341

Solutions to Practice Problems 341

Exercises . 346

Problems . 346

10
Recursion 351

10.1 Introduction to Recursion 352
Recursive Functions 352
Recursive Thinking 354
Recursive Function Calls and the Program Stack 356

10.2 Examples of Recursion 358
Recursive Number Sequence Pattern 358
Fractals . 360
Virus Scanner 364

Contents xv

10.3 Run Time Analysis 367

The Exponent Function 367
Counting Operations 368
Fibonacci Sequence 369
Experimental Analysis of Run Time 370

10.4 Searching . 374

Linear Search. 374
Binary Search 374
Other Search Problems 377

10.5 Case Study: Tower of Hanoi. 379

Classes Peg and Disk 383

Chapter Summary . 385

Solutions to Practice Problems 385

Exercises . 387

Problems . 388

11
The Web and Search 395

11.1 The World Wide Web 396

Web Servers and Web Clients 396
“Plumbing” of the WWW 397
Naming Scheme: Uniform Resource Locator 397
Protocol: HyperText Transfer Protocol 398
HyperText Markup Language 399
HTML Elements 400
Tree Structure of an HTML Document. 401
Anchor HTML Element and Absolute Links 401
Relative Links. 402

11.2 Python WWW API 403

Module urllib.request 403
Module html.parser 405
Overriding the HTMLParser Handlers 407
Module urllib.parse 408
Parser That Collects HTTP Hyperlinks 409

11.3 String Pattern Matching 411

Regular Expressions 411
Python Standard Library Module re 414

11.4 Case Study: Web Crawler 415

Recursive Crawler, Version 0.1 416
Recursive Crawler, Version 0.2 418
The Web Page Content Analysis 420

xvi Contents

Chapter Summary . 422
Solutions to Practice Problems 423
Exercises . 425
Problems . 426

12
Databases and Data Processing 429

12.1 Databases and SQL 430
Database Tables 430
Structured Query Language 432
Statement SELECT. 432
Clause WHERE 434
Built-In SQL Functions 436
Clause GROUP BY 436
Making SQL Queries Involving Multiple Tables 437
Statement CREATE TABLE 439
Statements INSERT and UPDATE 439

12.2 Database Programming in Python 440
Database Engines and SQLite 440
Creating a Database with sqlite3 441
Committing to Database Changes and Closing the Database . . . 442
Querying a Database Using sqlite3 443

12.3 Functional Language Approach 445
List Comprehension 445
MapReduce Problem Solving Framework 447
MapReduce, in the Abstract 450
Inverted Index 451

12.4 Parallel Computing 453
Parallel Computing 453
Class Pool of Module multiprocessing 454
Parallel Speedup 457
MapReduce, in Parallel 458
Parallel versus Sequential MapReduce 459

Chapter Summary . 461
Solutions to Practice Problems 462
Exercises . 465
Problems . 466

Index 471

Preface
This textbook is an introduction to programming, computer application development, and

the science of computing. It is meant to be used in a college-level introductory program-

ming course. More than just an introduction to programming, the book is a broad introduc-

tion to computer science and to the concepts and tools used for modern computer applica-

tion development.

The computer programming language used in the book is Python, a language that has a

gentler learning curve than most. Python comes with powerful software libraries that make

complex tasks—such as developing a graphics application or finding all the links in a web

page—a breeze. In this textbook, we leverage the ease of learning Python and the ease of

using its libraries to do more computer science and to add a focus on modern application

development. The result is a textbook that is a broad introduction to the field of computing

and modern application development.

The textbook’s pedagogical approach is to introduce computing concepts and Python

programming in a breadth-first manner. Rather than covering computing concepts and

Python structures one after another, the book’s approach is more akin to learning a natural

language, starting from a small general-purpose vocabulary and then gradually extending

it. The presentation is in general problem oriented, and computing concepts, Python struc-

tures, algorithmic techniques, and other tools are introduced when needed, using a “right

tool at the right moment” model.

The book uses the imperative-first and procedural-first paradigm but does not shy away

from discussing objects early. User-defined classes and object-oriented programming are

covered later, when they can be motivated and students are ready. The last three chapters

of the textbook use the context of web crawling and search engines to introduce a broad

array of topics. These include foundational concepts such as recursion, regular expressions,

depth-first search, and Google’s MapReduce framework, as well as practical tools such as

GUI widgets, HTML parsers, SQL, and multicore programming.

This textbook can be used in a course that introduces computer science and program-

ming to computer science majors. Its broad coverage of foundational computer science

topics as well as current technologies will give the student a broad understanding of the

field and a confidence to develop “real” modern applications that interact with the web

and/or a database. The textbook’s broad coverage also makes it ideal for students who need

to master programming and key computing concepts but will not take more than one or two

computing courses, in particular math, science, and engineering majors.

The Book’s Technical Features
The textbook has a number of features that engage students and encourage them to get their

hands dirty. For one, the book makes heavy use of examples that use the Python interactive

xvii

xviii Preface

shell. Students can easily reproduce these one-liners on their own. After doing so, students

will likely continue experimenting further using the immediate feedback of the interactive

shell.

Throughout the textbook, there are inline practice problems whose purpose is to re-

inforce concepts just covered. The solutions to these problems appear at the end of the

corresponding chapter, allowing students to check their solution or take a peek in case they

are stuck.

The textbook uses Caution boxes to warn students of potential pitfalls. It also uses

Detour boxes to briefly explore interesting but tangential topics. The large number of boxes,

practice problems, figures, and tables create visual breaks in the text, making the volume

more approachable for today’s students.

Most chapters in the text include a case study that showcases the concepts and tools

covered in the chapter in context. Finally, the textbook contains a large number of end-of-
chapter problems, many of which are unlike problems typically found in an introductory

textbook.

Online Textbook Supplements
The link to the book’s online content is www.wiley.com/college/perkovic. These sup-

plements are available there:

• Powerpoint slides for each chapter

• Expanded tutorials on SQL and HTML

• Code examples appearing in the book

• Exercise and problem solutions (for instructors only)

• Project ideas for Chapters 5 to 12 (for instructors only)

• Exam problems (for instructors only)

For Students: How to Read This Book
This book is meant to help you master programming and develop computational thinking

skills. Programming and computational thinking are hands-on activities that require a com-

puter with a Python integrated development environment, a pen, and paper. Ideally, you

should have those tools next to you as you read this book.

The book makes heavy use of small examples that use Python’s interactive shell. Try

running those examples in your shell. Feel free to experiment further. It’s very unlikely the

computer will burst into flames if you make a mistake!

You should also attempt to solve all the practice problems as they appear in the text.

Problem solutions appear at the end of the corresponding chapter. If you get stuck, it’s OK

to peek at the solution; after doing so, try solving the problem without peeking.

The text uses Caution boxes to warn you of potential pitfalls. These are very important

and should not be skipped. The Detour boxes, however, discuss topics that are only tangen-

tially related to the main discussion. You may skip those if you like. Or you may go further

and explore the topics in more depth if you get intrigued.

At some point while reading this text, you may get inspired to develop your own app,

whether a card game or an app that keeps track of a set of stock market indexes in real time.

If so, just go ahead and try it! You will learn a lot.

Preface xix

Overview of the Book
This textbook consist of 12 chapters that introduce computing concepts and Python pro-

gramming in a breadth-first manner.

Tour of Python and Computer Science
Chapter 1 introduces the basic computing concepts and terminology. Starting with a dis-

cussion of what computer science is and what developers do, the concepts of modeling,

algorithm development, and programming are defined. The chapter describes the computer

scientist’s and application developer’s toolkit, from logic to systems, with an emphasis on

programming languages, the Python development environment, and computational think-

ing.

Chapter 2 covers core built-in Python data types: the integer, Boolean, floating-point,

string, and list types. To illustrate the features of the different types, the Python interactive

shell is used. Rather than being comprehensive, the presentation focuses on the purpose of

each type and the differences and similarities between the types. This approach motivates

a more abstract discussion of objects and classes that is ultimately needed for mastering

the proper usage of data types. The case study at the end of the chapter takes advantage of

this discussion to introduce Turtle graphics classes that enable students to do simple, fun

graphics interactively.

Chapter 3 introduces imperative and procedural programming including basic execu-
tion control structures. This chapter presents programs as a sequence of Python statements

stored in a file. To control how the statements are executed, basic conditional and iterative

control structures are introduced: the one-way and two-way if statements as well as the

simplest for loop patterns of iterating through an explicit sequence or a range of numbers.

The chapter introduces functions as a way to neatly package a small application; it also

builds on the material on objects and classes covered in Chapter 2 to describe how Python

does assignments and parameter passing.

The first three chapters provide a shallow but broad introduction to Python program-

ming and computers science. Core Python data types and basic execution control structures

are introduced so students can write simple but complete programs early. Functions are in-

troduced early as well to help students conceptualize what a program is doing, that is, what

inputs it takes and what output it produces. In other words, abstraction and encapsulation

of functions is used to help students better understand programs.

Focus on Algorithmic Thinking
Chapter 4 covers strings and text processing in more depth. It continues the coverage of

strings from Chapter 2 with a discussion of string value representations, string operators

and methods, and formatted output. File input/output (I/O) is introduced as well and, in

particular, the different patterns for reading text files. Finally, the context of file I/O is used

to motivate a discussion of exceptions and the different types of exceptions in Python.

Chapter 5 covers execution control structures and loop patterns in depth. Basic con-

ditional and iteration structures were introduced in Chapter 3 and then used in Chapter 4

(e.g., in the context of reading files). Chapter 5 starts with a discussion of multiway condi-

tional statements. The bulk of the chapter is spent on describing the different loop patterns:

the various ways for loops and while loops are used. Multidimensional lists are intro-

duced as well, in the context of the nested loop pattern. More than just covering Python

loop structures, this core chapter describes the different ways that problems can be broken

xx Preface

down. Thus, the chapter fundamentally is about problem solving and algorithms.

Chapter 6 completes the textbook’s coverage of Python’s built-in container data types
and their usage. The dictionary, set, and tuple data types are motivated and introduced. This

chapter also completes the coverage of strings with a discussion of character encodings and

Unicode. Finally, the concept of randomness is introduced in the context of selecting and

permuting items in containers.

Chapters 4 through 6 represent the second layer in the breadth-first approach this text-

book takes. One of the main challenges students face in a introductory programming course

is mastering of conditional and iteration structures and, more generally, the computational

problem-solving and algorithm development skills. The critical Chapter 5, on patterns of

applying execution control structures, appears after students have been using basic condi-

tional statements and iteration patterns for several weeks and have gotten somewhat com-

fortable with the Python language. Having gained some comfort with the language and

basic iteration, students can focus on the algorithmic issues rather than less fundamental

issues, such as properly reading input or formatting output.

Managing Program Complexity
Chapter 7 shifts gears and focuses on the software development process itself and the prob-

lem of managing larger, more complex programs. It introduces namespaces as the founda-
tion for managing program complexity. The chapter builds on the coverage of functions and

parameter passing in Chapter 3 to motivate the software engineering goals of code reuse,

modularity, and encapsulation. Functions, modules, and classes are tools that can be used to

achieve these goals, fundamentally because they define separate namespaces. The chapter

describes how namespaces are managed during normal control flow and during exceptional

control flow, when exceptions are handled by exception handlers.

Chapter 8 covers the development of new classes in Python and the object-oriented pro-
gramming (OOP) paradigm. The chapter builds on Chapter 7’s uncovering of how Python

classes are implemented through namespaces to explain how new classes are developed.

The chapter introduces the OOP concepts of operator overloading—central to Python’s de-

sign philosophy—and inheritance—a powerful OOP property that will be used in Chapters

9 and 11. Through abstraction and encapsulation, classes achieve the desirable software en-

gineering goals of modularity and code reuse. The context of abstraction and encapsulation

is then used to motivate user-defined exception classes and the implementation of iterative

behavior in user-defined container classes.

Chapter 9 introduces graphical user interfaces (GUIs) and showcases the power of
the OOP approach for developing GUIs. It uses the Tk widget toolkit, which is part of

the Python Standard Library. The coverage of interactive widgets provides the opportunity

to discuss the event-driven programming paradigm. In addition to introducing GUI devel-

opment, the chapter also showcases the power of OOP to achieve modular and reusable

programs.

The broad goal of Chapters 7 though 9 is to introduce students to the issues of program

complexity and code organization. They describe how namespaces are used to achieve func-

tional abstraction and data abstraction and, ultimately, encapsulated, modular, and reusable

code. Chapter 8 provides a comprehensive discussion of user-defined classes and OOP.

The full benefit of OOP, however, is best seen in context, which is what Chapter 9 is about.

Additional contexts and examples of OOP are shown in later chapters and specifically in

Sections 10.5, 11.2, 12.3, and 12.4. These chapters provide a foundation for the students’

future education in data structures and software engineering methodologies.

Preface xxi

Crawling through Foundations and Applications
Chapters 10 through 12, the last three chapters of the textbook, cover a variety of advanced

topics, from fundamental computer science concepts like recursion, regular expressions,

and depth-first search, to practical and contemporary tools like HTML parsers, SQL, and

multicore programming. The theme used to motivate and connect these topics is the de-

velopment of web crawlers, search engines, and data mining apps. The theme, however, is

loose, and each individual topic is presented independently to allow instructors to develop

alternate contexts and themes for this material as they see fit.

Chapter 10 introduces foundational computer science topics: recursion, search, and
the run-time analysis of algorithms. The chapter starts with a discussion of how to think

recursively. This skill is then put to use on a wide variety of problems from drawing fractals

to virus scanning. This last example is used to illustrate depth-first search. The benefits and

pitfalls of recursion lead to a discussion of algorithm run-time analysis, which is then used

in the context of analyzing the performance of various list search algorithms. This chapter

puts the spotlight on the theoretical aspects of computing and forms a basis for future

coursework in data structures and algorithms.

Chapter 11 introduces the World Wide Web as a central computing platform and as a
huge source of data for innovative computer application development. HTML, the language

of the web, is briefly discussed before tools to access resources on the web and parse web

pages are covered. To grab the desired content from web pages and other text content, reg-

ular expressions are introduced. The different topics covered in this chapter are put to use

together with depth-first traversal from the previous chapter in the context of developing

a web crawler. A benefit of touching HTML parsing and regular expressions in an intro-

ductory course is that students will be familiar with their uses in context before rigorously

covering them in a formal languages course.

Chapter 12 covers databases and the processing of large data sets. The database lan-

guage SQL is briefly described as well as a Python’s database application programming

interface in the context of storing data grabbed from a web page. Given the ubiquity of

databases in today’s computer applications, it is important for students to get an early ex-

posure to them and their use (if for no other reason than to be familiar with them before

their first internship). The coverage of databases and SQL is introductory only and should

be considered merely a basis for a later database course. This chapter also considers how

to leverage the multiple cores available on computers to process big data sets more quickly.

Google’s MapReduce problem-solving framework is described and used as a context for

introducing list comprehensions and the functional programming paradigm.

For Instructors: How to Use This Book
The material in this textbook was developed for a two quarter course sequence introducing

computer science and programming to computer science majors. The book therefore has

more than enough material for a typical 15-week course (and probably just the right amount

of material for a class of well-prepared and highly motivated students).

The first six chapters of the textbook provide a comprehensive coverage of impera-

tive/procedural programming in Python. They are meant to be covered in order, but it is

possible to cover Chapter 5 before Chapter 4. Furthermore, the topics in Chapter 6 may be

skipped and then introduced as needed.

Chapters 7 through 9 are meant to be covered in order to effectively showcase OOP. It

is important to cover Chapter 7 before Chapter 8 because it demystifies Python’s approach

xxii Preface

to class implementation and allows the more efficient coverage of OOP topics such as

operator overloading and inheritance. It is also beneficial, though not necessary, to cover

Chapter 9 after Chapter 8 because it provides a context in which OOP is shown to provide

great benefits.

Chapters 9 through 12 are all optional, depend only on Chapters 1 through 6—with the

few exceptions noted—and contain topics that can, in general, be skipped or reordered at

the discretion of the course instructor. Exceptions are Sections 9.4 and 9.5 that illustrate

the OOP approach to GUI development, as well as Sections 10.5, 11.2, 12.3, and 12.4, all

of which make use of user-defined classes. All these sections should follow Chapter 8.

Instructors using this book in a course that leaves OOP to a later course can cover

Chapters 1 through 7 and then choose topics from the non-OOP sections of Chapters 9

through 12. Instructors wishing to cover OOP should use Chapters 1 through 9 and then

choose topics from Chapters 10 through 12.

Acknowledgments
The material for this textbook was developed over three years in the context of teaching

the CSC241/242 course sequence (Introduction to Computer Science I and II) at DePaul

University. In those three years, six separate cohorts of computer science freshmen moved

through the course sequence. I used the different cohorts to try different pedagogical ap-

proaches, reorder and reorganize the material, and experiment with topics usually not taught

in a course introducing programming. The continuous reorganization and experimentation

made the course material less fluid and more challenging than necessary, especially for the

early cohorts. Amazingly, students maintained their enthusiasm through the low points in

the course, which in turn helped me maintain mine. I thank them all wholeheartedly for

that.

I would like to acknowledge the faculty and administration of DePaul’s School of Com-

puting for creating a truly unique academic environment that encourages experimentation

and innovation in education. Some of them also had a direct role in the creation and shaping

of this textbook. Associate Dean Lucia Dettori scheduled my classes so I had time to write.

Curt White, an experienced textbook author, encouraged me to start writing and put in a

good word for me with publishing house John Wiley & Sons. Massimo DiPierro, the creator

of the web2py web framework and a far greater Python authority than I will ever be, created

the first outline of the content of the CSC241/242 course sequence, which was the initial

seed for the book. Iyad Kanj taught the first iteration of CSC241 and selflessly allowed me

to mine the material he developed. Amber Settle is the first person other than me to use this

textbook in her course; thankfully, she had great success, though that is at least as much

due to her excellence as a teacher. Craig Miller has thought more deeply about fundamen-

tal computer science concepts and how to explain them than anyone I know; I have gained

some of his insights through many interesting discussions, and the textbook has benefited

from them. Finally, Marcus Schaefer improved the textbook by doing a thorough technical

review of more than half of the book.

My course lecture notes would have remained just that if Nicole Dingley, a Wiley book

rep, had not suggested that I make them into a textbook. Nicole put me in contact with Wi-

ley editor Beth Golub, who made the gutsy decision to trust a foreigner with a strange name

and no experience writing textbooks to write a textbook. Wiley senior designer Madelyn

Lesure, along with my friend and neighbor Mike Riordan, helped me achieve the simple

and clean design of the text. Finally, Wiley senior editorial assistant Samantha Mandel

worked tirelessly on getting my draft chapters reviewed and into production. Samantha

Preface xxiii

has been a model of professionalism and good grace throughout the process, and she has

offered endless good ideas for making the book better.

The final version of the book is similar to the original draft in surface only. The vast

improvement over the initial draft is due to the dozens of anonymous reviewers. The kind-

ness of strangers has made this a better book and has given me a new appreciation for the

reviewing process. The reviewers have been kind enough not only to find problems but

also offer solutions. For their careful and systematic feedback, I am grateful. Some of the

reviewers, including David Mutchler, who offered his name and email for further corre-

spondence, went beyond the call of duty and helped excavate the potential that lay buried

in my early drafts. Jonathan Lundell also provided a technical review of the last chapters

in the book. Because of time constraints, I was not able to incorporate all the valuable sug-

gestions I received from them, and the responsibility for any any omissions in the textbook

are entirely my own.

Finally I would like to thank my spouse, Lisa, and daughters, Marlena and Eleanor, for

the patience they had with me. Writing a book takes a huge amount of time, and this time

can only come from “family time” or sleep since other professional obligations have set

hours. The time I spent writing this book resulted in my being unavailable for family time

or my being crabby from lack of sleep, a real double whammy. Luckily, I had the foresight

to adopt a dog when I started working on this project. A dog named Muffin inevitably

brings more joy than any missing from me... So, thanks to Muffin.

About the Author
Ljubomir Perkovic is an associate professor at the School of Computing of DePaul Uni-

versity in Chicago. He received a Bachelor’s degree in mathematics and computer science

from Hunter College of the City University of New York in 1990. He obtained his Ph.D.

in algorithms, combinatorics, and optimization from the School of Computer Science at

Carnegie Mellon University in 1998.

Prof. Perkovic has started teaching the introductory programming sequence for majors

at DePaul in the mid-2000s. His goal was to share with beginning programmers the ex-

citement that developers feel when working on a cool new app. He incorporated into the

course concepts and technologies used in modern application development. The material

he developed for the course forms the basis of this book.

His research interests include distributed computing, computational geometry, graph

theory and algorithms, and computational thinking. He has received a Fulbright Research

Scholar award for his research in computational geometry and a National Science Foun-

dation grant for a project to expand computational thinking across the general education

curriculum.

This page intentionally left blank

CHAPTER

1Introduction to
Computer Science
1.1 Computer Science 2

1.2 Computer Systems 4

1.3 Python Programming Language 8

1.4 Computational Thinking 9

Chapter Summary 13

IN THIS INTRODUCTORY CHAPTER, we provide the context for the
book and introduce the key concepts and terminology that we will be
using throughout. The starting point for our discussion are several
questions. What is computer science? What do computer scientists and
computer application developers do? And what tools do they use?

Computers, or more generally computer systems, form one set of
tools. We discuss the different components of a computer system
including the hardware, the operating system, the network and the
Internet, and the programming language used to write programs. We
specifically provide some background on the Python programming
language, the language used in this book.

The other set of tools are the reasoning skills, grounded in logic and
mathematics, required to develop a computer application. We introduce
the idea of computational thinking and illustrate how it is used in the
process of developing a small web search application.

The foundational concepts and terminology introduce in this chapter
are independent of the Python programming language. They are relevant
to any type of application development regardless of the hardware or
software platform or programming language used.

1

2 Chapter 1 Introduction to Computer Science

1.1 Computer Science
This textbook is an introduction to programming. It is also an introduction to Python, the

programming language. But most of all, it is an introduction to computing and how to look

at the world from a computer science perspective. To understand this perspective and define

what computer science is, let’s start by looking at what computing professionals do.

What Do Computing Professionals Do?
One answer is to say: they write programs. It is true that many computing professionals

do write programs. But saying that they write programs is like saying that screenwriters

(i.e., writers of screenplays for movies or television series) write text. From our experience

watching movies, we know better: screenwriters invent a world and plots in it to create sto-

ries that answer the movie watcher’s need to understand the nature of the human condition.

Well, maybe not all screenwriters.

So let’s try again to define what computing professionals do. Many actually do not write

programs. Even among those who do, what they are really doing is developing computer

applications that address a need in some activity we humans do. Such computing pro-

fessionals are often called computer application developers or simply developers. Some

developers even work on applications, like computer games, that are not that different from

the imaginary worlds, intricate plots, and stories that screenwriters create.

Not all developers develop computer games. Some create financial tools for investment

bankers, and others create visualization tools for doctors (see Table 1.1 for other examples.)

What about the computing professionals who are not developers? What do they do?

Some talk to clients and elicit requirements for computer applications that clients need.

Table 1.1 The range of
computers science.
Listed are examples of
human activities and, for
each activity, a software
product built by computer
application developers
that supports performing
the activity.

Activity Computer Application

Defense Image processing software for target detection and

tracking

Driving GPS-based navigation software with traffic views on

smartphones and dedicated navigation hardware

Education Simulation software for performing dangerous or

expensive biology laboratory experiments virtually

Farming Satellite-based farm management software that keeps

track of soil properties and computes crop forecasts

Films 3D computer graphics software for creating

computer-generated imagery for movies

Media On-demand, real-time video streaming of television

shows, movies, and video clips

Medicine Patient record management software to facilitate

sharing between specialists

Physics Computational grid systems for crunching data

obtained from particle accelerators

Political activism Social network technologies that enable real-time

communication and information sharing

Shopping Recommender system that suggests products that

may be of interest to a shopper

Space exploration Mars exploration rovers that analyze the soil to find

evidence of water

Section 1.1 Computer Science 3

Others are managers who oversee an application development team. Some computing pro-

fessionals support their clients with newly installed software and others keep the software

up to date. Many computing professionals administer networks, web servers, or database

servers. Artistic computing professionals design the interfaces that clients use to interact

with an application. Some, such as the author of this textbook, like to teach computing,

and others offer information technology (IT) consulting services. Finally, more than a few

computing professionals have become entrepreneurs and started new software businesses,

many of which have become household names.

Regardless of the ultimate role they play in the world of computing, all computing

professionals understand the basic principles of computing and how computer applications

are developed and how they work. Therefore, the training of a computing professional

always starts with the mastery of a programming language and the software development

process. In order to describe this process in general terms, we need to use slightly more

abstract terminology.

Models, Algorithms, and Programs
To create a computer application that addresses a need in some area of human activity, de-

velopers invent a model that represents the “real-world” environment in which the activity

occurs. The model is an abstract (imaginary) representation of the environment and is de-

scribed using the language of logic and mathematics. The model can represent the objects

in a computer game, stock market indexes, an organ in the human body, or the seats on an

airplane.

Developers also invent algorithms that operate in the model and that create, transform,

and/or present information. An algorithm is a sequence of instructions, not unlike a cooking

recipe. Each instruction manipulates information in a very specific and well-defined way,

and the execution of the algorithm instructions achieves a desired goal. For example, an

algorithm could compute collisions between objects in a computer game or the available

economy seats on an airplane.

The full benefit of developing an algorithm is achieved with the automation of the ex-

ecution of the algorithm. After inventing a model and an algorithm, developers implement

the algorithm as a computer program that can be executed on a computer system. While

an algorithm and a program are both descriptions of step-by-step instructions of how to

achieve a result, an algorithm is described using a language that we understand but that

cannot be executed by a computer system, and a program is described using a language

that we understand and that can be executed on a computer system.

At the end of this chapter, in Section 1.4, we will take up a sample task and go through

the steps of developing a model and an algorithm implementing the task.

Tools of the Trade
We already hinted at a few of the tools that developers use when working on computer ap-

plications. At a fundamental level, developers use logic and mathematics to develop models

and algorithms. Over the past half century or so, computer scientists have developed a vast

body of knowledge—grounded in logic and mathematics—on the theoretical foundations

of information and computation. Developers apply this knowledge in their work. Much of

the training in computer science consists of mastering this knowledge, and this textbook is

the first step in that training.

The other set of tools developers use are computers, of course, or more generally com-

puter systems. They include the hardware, the network, the operating systems, and also the

4 Chapter 1 Introduction to Computer Science

programming languages and programming language tools. We describe all these systems

in more detail in Section 1.2. While the theoretical foundations often transcend changes in

technology, computer system tools are constantly evolving. Faster hardware, improved op-

erating systems, and new programming languages are being created almost daily to handle

the applications of tomorrow.

What Is Computer Science?
We have described what application developers do and also the tools that they use. What

then is computer science? How does it relate to computer application development?

While most computing professionals develop applications for users outside the field of

computing, some are studying and creating the theoretical and systems tools that developers

use. The field of computer science encompasses this type of work. Computer science can

be defined as the study of the theoretical foundations of information and computation and

their practical implementation on computer systems.

While application development is certainly a core driver of the field of computer sci-

ence, its scope is broader. The computational techniques developed by computer scientists

are used to study questions on the nature of information, computation, and intelligence.

They are also used in other disciplines to understand the natural and artificial phenomena

around us, such as phase transitions in physics or social networks in sociology. In fact,

some computer scientists are now working on some of the most challenging problems in

science, mathematics, economics, and other fields.

We should emphasize that the boundary between application development and com-

puter science (and, similarly, between application developers and computer scientists) is

usually not clearly delineated. Much of the theoretical foundations of computer science

have come out of application development, and theoretical computer science investigations

have often led to innovative applications of computing. Thus many computing profession-

als wear two hats: the developer’s and the computer scientist’s.

1.2 Computer Systems
A computer system is a combination of hardware and software that work together to exe-

cute application programs. The hardware consists of physical components—that is, com-

ponents that you can touch, such as a memory chip, a keyboard, a networking cable, or

a smartphone. The software includes all the nonphysical components of the computer, in-

cluding the operating system, the network protocols, the programming language tools, and

the associated application programming interface (API).

Computer Hardware
The computer hardware refers to the physical components of a computer system. It may

refer to a desktop computer and include the monitor, the keyboard, the mouse, and other

external devices of a computer desktop and, most important, the physical “box” itself with

all its internal components.

The core hardware component inside the box is the central processing unit (CPU) . The

CPU is where the computation occurs. The CPU performs computation by fetching pro-

gram instructions and data and executing the instructions on the data. Another key internal

component is main memory, often referred to as random access memory (RAM). That

is where program instructions and data are stored when the program executes. The CPU

Section 1.2 Computer Systems 5

fetches instructions and data from main memory and stores the results in main memory.

The set of wirings that carry instructions and data between the CPU and main memory is

commonly called a bus. The bus also connects the CPU and main memory to other internal

components such as the hard drive and the various adapters to which external devices (such

as the monitor, the mouse, or the network cables) are connected.

The hard drive is the third core component inside the box. The hard drive is where files

are stored. Main memory loses all data when the computer is shut down; the hard drive,

however, is able to store a file whether the computer is powered on or off. The hard drive

also has a much, much higher capacity than main memory.

The term computer system may refer to a single computer (desktop, laptop, smartphone,

or pad). It may also refer to a collection of computers connected to a network (and thus to

each other). In this case, the hardware also includes any network wiring and specialized

network hardware such as routers.

It is important to understand that most developers do not work with computer hardware

directly. It would be extremely difficult to write programs if the programmer had to write

instructions directly to the hardware components. It would also be very dangerous because

a programming mistake could incapacitate the hardware. For this reason, there exists an

interface between application programs written by a developer and the hardware.

Operating Systems
An application program does not directly access the keyboard, the computer hard drive, the

network (and the Internet), or the display. Instead it requests the operating system (OS) to

do so on its behalf. The operating system is the software component of a computer system

that lies between the hardware and the application programs written by the developer. The

operating system has two complementary functions:

1. The OS protects the hardware from misuse by the program or the programmer and

2. The OS provides application programs an interface through which programs can

request services from hardware devices.

In essence, the OS manages access to the hardware by the application programs executing

on the machine.

DETOUR
Origins of Today’s Operating Systems

The mainstream operating systems on the market today are Microsoft Windows
and UNIX and its variants, including Linux and Apple OS X.

The UNIX operating system was developed in the late 1960s and early 1970s
by Ken Thompson at AT&T Bell Labs. By 1973, UNIX was reimplemented by
Thompson and Dennis Ritchie using C, a programming language just created by
Ritchie. As it was free for anyone to use, C became quite popular and program-
mers ported C and UNIX to various computing platforms. Today, there are several
versions of UNIX, including Apple’s Mac OS X.

The origin of Microsoft’s Windows operating systems is tied to the advent of
personal computers. Microsoft was founded in the late 1970s by Paul Allen and
Bill Gates. When IBM developed the IBM Personal Computer (IBM PC) in 1981,
Microsoft provided the operating system called MS DOS (Microsoft Disk Operating
System). Since then Microsoft added a graphical interface to the operating system

